If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=7F^2-84
We move all terms to the left:
(F)-(7F^2-84)=0
We get rid of parentheses
-7F^2+F+84=0
a = -7; b = 1; c = +84;
Δ = b2-4ac
Δ = 12-4·(-7)·84
Δ = 2353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2353}}{2*-7}=\frac{-1-\sqrt{2353}}{-14} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2353}}{2*-7}=\frac{-1+\sqrt{2353}}{-14} $
| r÷3=6+1 | | (2z+1)(4+z)=0 | | 3x+(-1)=14 | | 1/2*(1-y)+1/4y=2 | | x^2=160000 | | y+4.72=8.91 | | -8a+4a=12-a | | 7=2y-5 | | y-5.5=7.26 | | 5x-8=7+6 | | 16y+y=-14 | | y=2=1/2*0 | | 8/a=24 | | 58+68=3x | | -x+2-1/2x=2 | | -6x^2+12x=7 | | 135-x=45 | | 10+5x+20=180 | | x^2+4x+4=12 | | 15-x=90 | | k+1=-6 | | x^2-21=100 | | 9x+13=2x+17 | | 13=1/4(2x+16 | | (y−4)(y+5)−5y+20=0 | | 2y=16-4*4 | | 55+90=10x+45 | | 14x-6=22-7x | | 10+5x+37=180 | | 7x-1=360 | | 1.2x-1.1x=10 | | r2=16.7 |